Could Fisher, Jeffreys and Neyman Have Agreed on Testing?

نویسنده

  • James O. Berger
چکیده

Ronald Fisher advocated testing using p-values, Harold Jeffreys proposed use of objective posterior probabilities of hypotheses and Jerzy Neyman recommended testing with fixed error probabilities. Each was quite critical of the other approaches. Most troubling for statistics and science is that the three approaches can lead to quite different practical conclusions. This article focuses on discussion of the conditional frequentist approach to testing, which is argued to provide the basis for a methodological unification of the approaches of Fisher, Jeffreys and Neyman. The idea is to follow Fisher in using p-values to define the “strength of evidence” in data and to follow his approach of conditioning on strength of evidence; then follow Neyman by computing Type I and Type II error probabilities, but do so conditional on the strength of evidence in the data. The resulting conditional frequentist error probabilities equal the objective posterior probabilities of the hypotheses advocated by Jeffreys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Behrens-Fisher problem revisited: A Bayes-frequentist synthesis

The Behrens-Fisher problem concerns the inference for the difference between the means of two normal populations whose ratio of variances is unknown. In this situation, Fisher’s fiducial interval differs markedly from the Neyman-Pearson confidence interval. A prior proposed by Jeffreys leads to a credible interval that is equivalent to Fisher’s solution, but carries a different interpretation. ...

متن کامل

Models and Statistical Inference: The Controversy between Fisher and Neyman–Pearson

The main thesis of the paper is that in the case of modern statistics, the differences between the various concepts of models were the key to its formative controversies. The mathematical theory of statistical inference was mainly developed by Ronald A. Fisher, Jerzy Neyman, and Egon S. Pearson. Fisher on the one side and Neyman–Pearson on the other were involved often in a polemic controversy....

متن کامل

The Widest Cleft in Statistics - How and Why Fisher opposed Neyman and Pearson

The paper investigates the “widest cleft”, as Savage put it, between frequencists in the foundation of modern statistics: that opposing R.A. Fisher to Jerzy Neyman and Egon Pearson. Apart from deep personal confrontation through their lives, these scientists could not agree on methodology, on definitions, on concepts and on tools. Their premises and their conclusions widely differed and the two...

متن کامل

A Decision-Theoretic Formulation of Fisher’s Approach to Testing

In Fisher’s interpretation of statistical testing, a test is seen as a ‘screening’ procedure; one either reports some scientific findings, or alternatively gives no firm conclusions. These choices differ fundamentally from hypothesis testing, in the style of Neyman and Pearson, which do not consider a non-committal response; tests are developed as choices between two complimentary hypotheses, t...

متن کامل

General Testing Fisher , Neyman , Pearson , and Bayes

One of the famous controversies in statistics is the dispute between Fisher and Neyman-Pearson about the proper way to conduct a test. Hubbard and Bayarri (2003) gave an excellent account of the issues involved in the controversy. Another famous controversy is between Fisher and almost all Bayesians. Fisher (1956) discussed one side of these controversies. Berger’s Fisher lecture attempted to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003